Name: _____

Basic: Limits at a Point

Sometimes a function approaches a value but never quite hits it. This is called a **limit**.

- Horizontal asymptotes indicate limits at infinity and/or negative infinity.
- Holes indicate limits at other values.

Informal Definition of a Limit:

Let f be a function. Then the limit of f at x = a (denoted $\lim_{x \to a} f(x)$) is the value that the output of the function approaches as the input of the function approaches x = a.

(1) Define a rational function f that has a hole at x = 4.

(2) Graph your function f from Problem #1.

(3) What is $\lim_{x \to 4} f(x)$? Why?

(4) What is $\lim_{x \to 1} f(x)$? Why?

Calculus – Lesson 5: Introduction to Limits (page 2) Upward Bound Summer 2018

When we talk about limits at a point, we usually mean **two-sided limits**. Whether you approach the x-value from the left or the right, you will be approaching the same y-value.

But we can also talk about **one-sided limits** if we use the proper notation.

- The limit from the left is denoted $\lim_{x \to a^-} f(x)$.
- The limit from the right is denoted $\lim_{x \to a^+} f(x)$.

A [two-sided] limit only exists if the limits from the left and right are equal.

For Problems #5-7, let f be the function defined by $f(x) = \frac{|x|}{x}$.

(5) What is $\lim_{x\to 0^-} f(x)$?

(6) What is $\lim_{x\to 0^+} f(x)$?

(7) Does $\lim_{x\to 0} f(x)$ exist? Why or why not?

Functions can sometimes be defined at a point and have a limit there, but they are not equal.

(8) Define a function g such that $\lim_{x\to -3} g(x)$ exists, -3 is in the domain of g, and $\lim_{x\to -3} g(x) \neq g(-3)$. Explain how you know all conditions hold.

(9) Provide a definition for a function h such that $\lim_{x\to 2} h(x)$ does not exist, $\lim_{x\to 2^-} h(x)$ exists, $\lim_{x\to 2^+} h(x)$ exists, 2 is in the domain of h, and $\lim_{x\to 2^-} h(x) \neq h(2) \neq \lim_{x\to 2^+} h(x)$. Explain how you know all conditions hold.

Name:

Intermediate: Limits at Infinity

The informal definition works for limits at infinity as well, if you allow the a to be infinity.

(10) Write in your own words an informal definition for a limit at infinity.

(11) Define a rational function f such that $\lim_{x \to \infty} f(x) = 3$.

(12) Graph your function f from Problem #11.

(13) What is $\lim_{x \to -\infty} f(x)$? Why?

(14) What is $\lim_{x\to 0} f(x)$? Why?

(15) Define a function g such that $\lim_{x\to\infty} g(x) = 3$ and g is *not* a rational function.

Name:

Calculus – Lesson 5: Introduction to Limits (page 4) Upward Bound Summer 2018

(16) Graph your function f from Problem #15.

(18) Define a function h which has *two* distinct horizontal asymptotes. What are they?

Advanced: Formal Definition of a Limit

There is a more rigorous definition for a limit than the informal definition provided at the start of this lesson.

Formal Definition of a Limit:

Let f be a function defined on an interval containing x = a (except possibly at x = a). Then the limit of f at x = a is the value $\lim_{x \to a} f(x)$ such that for every $\varepsilon > 0$ there exists a $\delta > 0$ so that whenever $|x - a| < \delta$, $|f(x) - \lim_{x \to a} f(x)| < \varepsilon$.

(19) Let $f(x) = x^2$. Find a value $\delta > 0$ so that whenever $|x - 2| < \delta$, |f(x) - 4| < 0.01.

(20) Prove that $\lim_{x \to 2} (x^2) = 4$.